Hard-wiring and Soft-wiring in Sustainability via health program examples

Hard-wiring and Soft-wiring in Sustainability via health program examples: by Laurence Desvignes and Jindra Cekan/ova

Overview

We all want things to last. Most of us joined the ‘sustainable development’ industry hoping our foreign aid projects not only do good while we are there but long afterward. Following on last month’s blog on better learning about project design, implementation, and M&E, here are some things to do better.

Long-term sustainability rests on four pillars: the first rests on how the project is designed and implemented before exit and the second is to what degree conditions are needed for the continuation of results the project generated are put into place. While the first one embeds sustainability into its very results, the second invests in processes to foster the continuation of results. The other two of the four pillars, returning to see what lasts by evaluating the sustainability of results two or more years later and bringing those lessons back to funding, design, implementation, and building in shock-resilience, e.g., such as to climate change, are in other Valuing Voices blogs.

We focus on 1 and 2 in this blog, and use an analogy of hard-wiring and soft-wiring sustainability into the fabric of the project:

  1. Hardwiring, ‘baking-in’ sustainability involves the design/ implementation which predisposes results lasting. This includes investing in Maternal Child Health and Nutrition’s first 1000 days from conception to age two that are vital for child development. The baby’s physical development and nutrition are so important as is maternal well-being. Investing in these early days leads to better health and nutrition throughout their lives. So too are buying local. Too often our projects rely on imported technology and inputs that are hard to replace if broken. A project on hand pumps used by UNICEF suggested local purchase of those “designed to optimize the chances of obtaining good quality hand pumps and an assured provision of spare parts” involves both the hardware of the pump and also the “capacity building plan and a communication strategy.” Also using local capacity/specialists when available vs external consultants can also be key to building the sustainability of a project.

Another example of baking-in sustainability is using participatory approaches to ensure that those implementing- such as the communities/ local authorities. In this example, it’s grassroots where participants are heard during design in terms of their priorities and how the project should be implemented. This includes targeting discussions and monitoring and evaluation being done with and by communities. The seminal research of 6,000 interviews with aid recipients, Time to Listen, found that they want to participate and when they do, things are more likely to be sustained, rather than being passive recipients…. there is ex-post proof such programming is more ‘owned’ and more sustained.

Conducting in-depth needs assessments at design is usually the way to collect information about what is needed and how projects should be implemented to last. Unfortunately, very often, the time is very limited for the proposal development and (I)NGOs are under pressure of short deadlines to submit the proposal, and needs assessments are either done quickly, collecting very basic information or not done at all. Yet time spent valuing the voices of participants can bring great richness. In 2022, the UN’s FAO did a monitoring and evaluation study in Malawi validating indicators for poverty by asking communities how they identify it from the start. “Researchers were impressed at how accurately the people they interviewed were able to gauge the relative wealth of their neighbors.” We were not surprised as the locals often know best.   Another example with Mines Advisory Group in Cambodia, we developed a community-based participatory approach for design whereby project staff would work with the mine-affected communities to draw local maps of their villages, highlighting the location of the dangerous places and the key areas/places used by the communities. Staff and communities discussed the constraints, risks, needs, etc. to make their community safer, which the project would follow up with risk education, clearance, victim assistance, and/or alternative economic /development solutions to make the community safer. Other mine action agencies, e.g. Danish Refugee Council (Danish Demining Group) are also now using safer community approaches, involving local residents to decide on how to make their village safer depending on the community priorities[1].

Hardwiring in participatory feedback-loop learning from locals during implementation is also key. Implementation of a community feedback strategy once the programme is running is also essential. The community feedback mechanism (CFM) is a formal system established to enable affected populations to communicate information on their views, concerns, and experiences of a humanitarian agency or of the wider humanitarian system. It systematically captures, records, tracks, and follows up on the feedback it receives to improve elements of a response. CFM is key to ensuring that people affected by crisis have access to avenues to hold humanitarian actors to account; to offer affected people a formalized structure for raising concerns if they feel their needs are not being met, or if the assistance provided is having any unintended and harmful consequences;  to understand and solicit information on their experience of a humanitarian agency or response; as part of a broader commitment to quality and accountability that enables organizations to recognize and respond to any failures in response; to promote the voices and influence of people affected so their perspectives, rights, and priorities remain at the forefront of humanitarian/development work[2].

Promoting and implementing community engagement, such as a community feedback strategy, provides a basis for dialogue with people affected on what is needed and on how what is needed might best be provided, especially as needs change during implementation. This will help identify priority needs and is a means to gauge beneficiaries’ understanding of activities being carried out, to assist in the identification of local partners and establishment and follow-up of partnerships, and in the organizational development and capacity building of local institutions and authorities. It can strengthen the quality of assistance by facilitating dialogue and meaningful exchange between aid agencies and affected people at all stages of humanitarian response and result in the empowerment of those involved. Targeted people are viewed as social actors that can play an active role in decisions affecting their lives.

OXFAM’s project in Haiti starting in 2012 came as a result of a cholera epidemic that began in 2010 (“Preventing the Cholera Epidemic by Improving WASH Services and Promoting Hygiene in the North and Northeast”), whose goal was to contribute to the cholera elimination, experimented with the community feedback strategy as a means of gauging the recipients’ understanding of the activities carried out and of further strengthening the links between OXFAM and the communities during implementation. The initial process of community feedback was intended to both receive recommendations from project participants for better management of the action and also to better understand the strengths and weaknesses of Oxfam interventions. Based on the information and recommendations applied, OXFAM served as a bridge between the community and the actors involved (e.g. private firm contracted to carry out some health centers/ water systems renovation work or other) in the implementation of the project. This is also part of Oxfam’s logic of placing more emphasis on the issue of accountability and community engagement.

The feedback-loop benefits of such a community process are manyfold, especially on Protection, human rights, risk management, and further below, adapting Implementation, M&E, and fostering organizational learning:

  • CFMs assist in promoting the well-being, rights, and protection of people by offering them a platform to have a voice and be heard
  • it fosters participation, transparency, and trust
  • It uses Do No Harm and conflict-sensitive programming
  • It helps identify staff misconduct
  • It functions as a risk management and early warning system

Adapting Implementation and Improving M&E:

  • This process makes it possible to adapt to the priorities of the beneficiaries, to better meet their needs hence ensuring the agency’s accountability to the affected population
  • It facilitates and guarantees a better quality of the project.
  • It represents a means of monitoring our approaches and our achievements.
  • It makes it possible to construct a common vision shared between the various actors and the project participants/targeted communities.

Organizational Learning:

  • Ensuring the programme quality and accountability through the establishment of an appropriate accountability strategy (including Transparency, Feedback, Participation, Monitoring, and Effectiveness) and relevant methodologies and tools (since the planning stage of the project) is a key exercise which allow to think and plan for the sustainability of the programme at an early stage.
  • It allows us to gauge the strengths and weaknesses of the interventions while offering us the opportunity to learn from our experiences, hence allowing for programmatic learning and adaptative programming.
  • It conveys the impact of the project and the change brought about in the lives of the beneficiaries.
  • It is part of the logic of capitalizing on experiences to improve the quality of future projects.

 

2. Soft-wiring is creating conditions to make sustainability more likely for local communities and partners by thinking about how to replace what has been brought by the projects’ donors and implementers. This involves an analysis as well as actions that put conditions for sustainability into place before and during the time that foreign aid projects close. Valuing Voices’ checklists for exiting sustainably involves local ownership, sufficient capacities, and resources, viable partnerships, how well risks such as climate and economic shocks were identified and managed, and benchmarking for success 1-2 years before closure. Later it is important to return to check findings at ex-post project, comparing completion results to what was sustained 2-30 years later.

There are four categories of sustainability-fostering actions to do pre-exit which were identified by Rogers and Coates of Tufts for USAID for sustained exit:

  1. RESOURCES:

Several blogs on Valuing Voices deal with resources, including assumptions donors make. Donor resource investments cannot be assumed to be sustained.  The checklists outline a wide array of questions to ask during design and latest a year pre-exit, including what assumptions do aid projects make?  USAID water/ sanitation/ hygiene investments have mostly not been sustained, due to a combination of lack of resources to maintain them and low ownership of the resources invested.   Some key questions are:

  • Did the project consider how those taking over the project would get sufficient resources, e.g., grant funding or other income generation available or renting out their facility or infrastructure that they own or shift some of their activities to for-profit production, sold to cover part of project costs?
  • Does the project or partner have a facility or infrastructure that they own and is rentable to increase resources outside donor funding or can the project shift to for-profit, including institutional and individual in-kind products or technical knowledge skills that can be sold to cover part of project costs?
  • What new equipment is needed, e.g. computers, vehicles, technical (e.g. weighing scales) for activities to continue, and which stakeholder will retain them?
  • Or even no resources are needed because some project activities will scale down, move elsewhere, focus on a smaller number of activities that are locally sustainable, or the whole project will naturally phase-out)

2. PARTNERSHIPS:

The objective of that Oxfam project was to reduce the risks of communities placed in a situation of acute vulnerability to the cholera epidemic in two departments in Haiti (where about 1.5 million inhabitants reside). It focused on sustainability by effectively supporting and accompanying governmental WASH and health structures in the rapid response to alerts and outbreaks recorded in the targeted communities. How? Through awareness-raising activities among the populations concerned, by strengthening the epidemiological surveillance system and coordination between concerned stakeholders. The project also aimed to improve drinking water structures such as drinking water distribution points, drinking water networks or systems, catchments, and boreholes.  As part of this intervention, Oxfam worked in close collaboration and in support of the Departmental Directorates of Health (DH), DINEPA (government services responsible for water and sanitation), and local authorities at the level of cities, towns and neighborhoods, and community structures including civil protection teams.   Oxfam and DINEPA staff intervened through mixed mobile response teams that included technical and managerial staff from the health department to whom Oxfam provided ongoing technical support in terms of WASH analysis and actions, WASH training, finance training, and monitoring, as well as logistical support for the deployment of teams in the field (provision of vehicles and drivers). Oxfam was therefore working to ensure that cholera surveillance and mitigation actions were led by state and community actors, and by supporting state structures to build their capacities and allow ownership of the various aspects of the fight against cholera.   Concretely, this was done as follows:

  • Preliminary meetings and discussions were held with concerned governmental authorities to agree on a plan of action based on needs, implementation means, priorities, and budget for the health and wash governmental services/teams to be able to function. This was followed by the signature of an MoU between Oxfam and the Departmental Directorates of Health (DH).
  • An action plan was set up with the DH and DINEPA (governmental water and sanitation agency) at the very beginning of the project.
  • Outbreak response teams were managed directly by the DH and the staff was recruited, managed, and paid by the DH. The DH and DINEPA implemented the activities, managed the staff of the mobile teams, and provide technical monitoring in coordination with Oxfam.
  • The epidemiological monitoring activities carried out by the DH were also monitored by the Oxfam epidemiologist who, in close coordination with the DH, built the capacities of epidemiologists and staff at the departmental level and at the level of the treatment centers to ensure adequate monitoring and communication.
  • An Oxfam social engineering officer worked with DINEPA to ensure that the various water committees at the sources/infrastructure rehabilitated by Oxfam were functional. Sources/infrastructures were rehabilitated in concert with DINEPA to ensure the proper ownership.
  • Oxfam provided funding, and technical supervision and wrote and submitted the final report to the donor. Based on DH’s regular reports on activities which were then consolidated by Oxfam for the donor.
  • Teams were paid directly by the DH from funds received by Oxfam, based on the budget agreed by both Oxfam and the DH, and were based on government salary scales.
  • The Oxfam WASH team, which systematically accompanies case investigations in the field, further encouraged the participation of DINEPA and its community technicians, through regular meetings with the DINEPA departmental directors.
  • Overall, Oxfam ensured to provide support and capacity building of the DH, DINEPA, and community actors involved in the fight against cholera, to ensure proper ownership and to avoid substitution of the health/wash authorities.

3. OWNERSHIP:

The type of peer-partnering at design and during implementation described above is vital for ownership and sustainability. Unless we consider people’s ownership of the project and capacities to sustain results, they won’t be sustained. See Cekan’s exiting for sustainability checklists on phasing over before phasing out and exit, strengthening ownership, which brings us full circle to the participatory hard-wiring described above in Haiti.

4. CAPACITIES-STRENGTHENING

We have to strengthen capacities at the most sustainable level. Taking an example from IRC’s Sierra Leone Gender-based Violence project involves looking at what happens when capacities training done for local participants and partners to take over are not done right. In this case, there were two-year consultancies to the Ministry (MSWGCA) on strategic planning and gender training, but “it is not clear if this type of support has had a sustainable impact. The institutional memory often disappears with the departure of the consultant, leaving behind sophisticated and extensive plans and strategies that there is simply no capacity to implement.” The report found that community-based initiatives that are the “primary sources of support for GBV victims living in rural areas in a more innovative and sustainable way that promotes local ownership. They also may yield more results,” most donor agencies find it hard to partner with community-based organizations so they recommended a focus on training and capacity-building of mainstream health workers to respond to GBV and aim for the government will assume control of service provision in approximately five years. The excellent manual by Sarriot et al on Sustainability Planning, “Taking the Long View: A Practical Guide to Sustainability Planning and Measurement in Community-Oriented Health Programming puts local capacity strengthening at the core. We have to consult and collaborate throughout and create an ‘enabling environment’ so that the activities and results are theirs.

 

 

 

 

 

 

 

 

Source: Sarriot et al 2008

Obviously, we should check on the sustainability we hope for. As ITAD/CRS note, we should do and learn from more ex-post evaluations which is much of what Valuing Voices advocates for.

 

Recommendations for fostering sustainability:

Few donors require information on how hard-wired or how soft-wired programming pre-exit is at closure which would make sustainability likely. Even fewer demand actual post-closure sustainability data to confirm assumptions at exit, sadly we believe most of our foreign aid has had limited sustained impacts. But this can change.   Donors need to be educated that the “localization” agenda is the new trend (just as gender, resilience, and climate change have been at one point). It is beyond the “nationalization” of staff members (e.g. replacing expatriates with national staff), which is only one of the elements relating to locallization. True localization is to promote the local leadership of communities in their own ‘sustainable development’. While this is easier to say than to do, sustainability depends on it. We foster it through the hard-wiring and soft-wiring we discussed above and more steps, below.   Here are specific steps from Laurence’s and Jindra’s experiences with the Global South:

  • Funds & additional time for local partnership and ownership need to be embedded in the design and planned for, which requires a different approach on which the donors also need to be sensitized/ educated/ advocated to;
  • In-depth needs assessment must be carried out just before or when an NGO sets up an operation – it usually takes time and should be integrated into any operation. Advocating this approach to donors is key so that it can be included in the budget or the NGO needs to find its own funds to do so) and the NGO country and sector strategy can then be updated yearly to embed such activities into the (I)NGO DNA;
  • Conduct a capacity strengthening assessment of the local authorities or partners with whom we are going to conduct the project. This can take between 3 to 6 months, depending on the number and type of actors involved but this is an essential element to build self-sustaining local capacities and ensure that comprehensive capacity building is going to take place. This transparent step is also an essential step to ensure ownership by national/governmental stakeholders;
  • It is vital to allow time to plan for an exit strategy at an early stage, even as early as design. This requires time and needs to be included in the budget for the implementation of the plan at least one year before the end, for phasing over to local implementing partners to take over before the donors/ Global North implementers exit, and for possibly strengthening capacities or extending programming to deliver on their timeline rather than ours before exiting out. More on this from CRS’ Participation by All ex-post and of course the oft-cited “Stopping As Success: Locally-led Transitions in Development” by Peace Direct, Search for Common Ground, and CDA. Also do not forget shared leadership noted by UK’s INTRAC’s “Investing in Exit”;
  • Finally, don’t forget about evaluating ex-posts and embedding those lessons into future design/ implementation/ monitoring and evaluation.

  Investing in sustainability by hard-wiring or soft-wiring works! Let us know what you do…      

[1] https://drc.ngo/our-work/what-we-do/core-sectors/humanitarian-disarmament-and-peacebuilding/

[2] https://www.drc.ngo/media/vzlhxkea/drc_global-cfm-guidance_web_low-res.pdf

The Contentious Power of Evaluations, Guest Blog by Hanneke de Bode

THE CONTENTIOUS POWER OF EVALUATIONS

or why sustainable results are so hard to come by….

 

A while ago, I reacted to a discussion among development aid/cooperation evaluators about why there are so few NGO evaluations available. It transpired that many people do not even know what they often look like, which is why I wrote a kind of Common Denominator Report: only about small evaluations, and self-explanatory in the sense that one understands why they are rarely published. The version below is slightly different from the original.

 

Most important elements of a standard evaluation report for NGOs and their donors; about twenty days of work; about 20,000 Euros budget (TVA included).

 

In reality, the work takes at least twice as much time as calculated and will still be incomplete/ quick, and dirty because it cannot decently be done within the proposed framework of conditions and answering all 87 questions or so that normally figure in the ToR.

 

EXECUTIVE SUMMARY

The main issues in the project/ programme, the main findings, the main conclusions, and the main recommendations, presented in a positive and stimulating way (the standard request from the Comms and Fundraising departments) and pointing the way to the sunny uplands. This summary is written after a management response to the draft report has been ‘shared with you’. The management response normally says:

  • this is too superficial (even if you explain that it could not be done better, given the constraints);
  • this is incomplete (even if you didn’t receive the information you needed);
  • this is not what we asked (even if you had an agreement about the deliverables)
  • you have not understood us (even if your informants do not agree among themselves and contradict each other)
  • you have not used the right documents (even if this is what they gave you)
  • you have got the numbers wrong; the situation has changed in the meantime (even if they were in your docs);
  • your reasoning is wrong (meaning we don’t like it);
  • the respondents to the survey(s)/ the interviews were the wrong ones (even if the evaluand suggested them);
  • we have already detected these issues ourselves, so there is no need to put them in the report (meaning don’t be so negative).

 

BACKGROUND

Who the commissioning organisation is, what they do, who the evaluand is, what the main questions for the evaluators were, who got selected to do this work, and how they understood the questions and the work in general.

 

METHODOLOGY

In the Terms of Reference for the evaluation, many commissioners already state how they want an evaluation done. This list is almost invariably forced on the evaluators, thereby reducing them from having independent status to being the ‘hired help’ from a Temp Agency:

  • briefings by Director and SMT [Senior Management Team] members for scoping and better understanding;
  • desk research leading to notes about facts/ salient issues/ questions for clarification;
  • survey(s) among a wider stakeholder population;
  • 20-40 interviews with internal/ external stakeholders;
  • analysis of data/ information;
  • recommendations;
  • processing feedback on the draft report.

 

DELIVERABLES

In the Terms of Reference, many commissioners already state which deliverable they want and in what form:

  • survey(s);
  • interviews;
  • round table/ discussion of findings and conclusions;
  • draft report;
  • final report;
  • presentation to/ discussion with selected stakeholders.

 

PROJECT/ PROGRAMME OVERVIEW

 

Many commissioners send evaluators enormous folders with countless documents, often amounting to over 3000 pages of uncurated text with often unclear status (re authors, purpose, date, audience) and more or less touching upon the facts the evaluators are on a mission to find. This happens even when the evaluators give them a short list with the most relevant docs (such as grant proposal/ project plan with budget, time and staff calculations, work plans, intermediate reports, intermediate assessments, and contact lists). Processing them leads to the following result:

 

According to one/ some of the many documents that were provided:

  • the organisation’s vision is that everybody should have everything freely and without effort;
  • the organisation’s mission is to work towards having part of everything to not everybody, in selected areas;
  • the project’s/ programme’s ToC indicates that if wishes were horses, poor men would ride;
  • the project’s/ programme’s duration was four/ five years;
  • the project’s/ programme’s goal/ aim/ objective was to provide selected parts of not everything to selected parts of not everybody, to make sure the competent authorities would support the cause and enshrine the provisions in law, The beneficiaries would enjoy the intended benefits, understand how to maintain them and teach others to get, enjoy and amplify them, that the media would report favourably on the efforts, in all countries/ regions/ cities/ villages concerned and that the project/ programme would be able to sustain itself and have a long afterlife;
  • the project’s/ programme’s instruments were fundraising and/ or service provision and/ or advocacy;
  • the project/ programme had some kind of work/ implementation plan.

 

FINDINGS/ ANALYSIS

 

This is where practice meets theory. It normally ends up in the report like this:

 

Due to a variety of causes:

  • unexpectedly slow administrative procedures;
  • funds being late in arriving;
  • bigger than expected pushback and/ or less cooperation than hoped for from authorities- competitors- other NGOs- local stakeholders;
  • sudden changes in project/ programme governance and/ or management;
  • incomplete and/ or incoherent project/ programme design;
  • incomplete planning of project/ programme activities;
  • social unrest and/ or armed conflicts;
  • Covid;

 

The project/ programme had a late/ slow/ rocky start. Furthermore, the project/ programme was hampered by:

  • partial implementation because of a misunderstanding of the Theory of Change which few employees know about/ have seen/ understand, design and/ or planning flaws and/ or financing flaws and/ or moved goalposts and/ or mission drift and/ or personal preferences and/ or opportunism;
  • a limited mandate and insufficient authority for the project’s/ programme’s management;
  • high attrition among and/ or unavailability of key staff;
  • a lack of complementary advocacy and lobbying work;
  • patchy financial reporting and/ or divergent formats for reporting to different donors taking time and concentration away;
  • absent/ insufficient monitoring and documenting of progress;
  • little or no adjusting because of absent or ignored monitoring results/ rigid donor requirements;
  • limited possibilities of stakeholder engagement with birds/ rivers/ forests/ children/ rape survivors/ people in occupied territories/ murdered people/ people dependent on NGO jobs & cash etc;
  • internal tensions and conflicting interests;
  • neglected internal/ external communications;
  • un/ pleasant working culture/ lack of trust/ intimidation/ coercion/ culture of being nice and uncritical/ favouritism;
  • the inaccessibility of conflict areas;

 

Although these issues had already been flagged up in:

  • the evaluation of the project’s/ programme’s first phase;
  • the midterm review;
  • the project’s/ programme’s Steering Committee meetings;
  • the project’s/ programme’s Advisory Board meetings;
  • the project’s/ programme’s Management Team meetings;

 

Very little change seems to have been introduced by the project managers/ has been detected by the evaluators.

 

In terms of the OECD/ DAC criteria, the evaluators have found the following:

  • relevance – the idea is nice, but does it cut the mustard?/ others do this too/ better;
  • coherence – so so, see above;
  • efficiency – so so, see above;
  • effectiveness – so so, see above;
  • impact – we see a bit here and there, sometimes unexpected positive/ negative results too, but will the positives last? It is too soon to tell, but see above;
  • sustainability – unclear/ limited/ no plans so far.

 

OVERALL CONCLUSION

 

If an organisation is (almost) the only one in its field, or if the cause is still a worthy cause, as evaluators you don’t want the painful parts of your assessments to reach adversaries. This also explains the vague language in many reports and why overall conclusions are often phrased as:

 

However, the obstacles mentioned above were cleverly navigated by the knowledgeable and committed project/ programme staff in such a way that in the end, the project/ programme can be said to have achieved its goal/ aim/ objective to a considerable extent.

 

Galileo: “Eppur si muove” = “And yet it moves”

 

 

RECOMMENDATIONS

 

Most NGO commissioners make drawing up a list of recommendations compulsory. Although there is a discussion within the evaluation community about evaluators’ competence to do precisely that, many issues found in this type of evaluation have organisational; not content; origins. The corresponding recommendations are rarely rocket science and could be formulated by most people with basic organisational insights or a bit of public service or governance experience. Where content is concerned, many evaluators are selected because of their thematic experience and expertise, so it is not necessarily wrong to make suggestions.

They often look like this:

 

Project/ programme governance

  • limit the number of different bodies and make remit/ decision making power explicit;
  • have real progress reports;
  • have real meetings with a real agenda, real documents, real minutes, real decisions, and real follow-up;
  • adjust;

Project/ programme management

  • review and streamline/ rationalise structure to reflect strategy and work programme;
  • give project/ programme leaders real decision making and budgetary authority;
  • have real progress meetings with a real agenda, real minutes, real decisions, and real follow-up;
  • implement what you decide, but monitor if it makes sense;
  • adjust;

Organisational management

  • consult staff on recommendations/ have learning sessions;
  • draft implementation plan for recommendations;
  • carry them out;

Processes and Procedures

  • get staff agreement on them;
  • commit them to paper;
  • stick to them – but not rigidly;

Obviously, if we don’t get organisational structure and functioning, programme or project design, implementation, monitoring, evaluation, and learning right, there is scant hope for the longer-term sustainability of the results that we should all be aiming for.

Sustainability of what and how do we know? Measuring projects, programs, policies…

On my way to present at the European Evaluation Society’s annual conference, I wanted to close the loop on the Nordic and Netherlands ex-post analysis. The reason is, that we’ll be discussing the intersection of different ways to evaluate ‘sustainability’ over the long- and short-term, and how we’re transforming evaluation systems. The session on Friday morning is called “Long- And Short-Term Dilemmas In Sustainability Evaluations” (Cekan, Bodnar, Hermans, Meyer, and Patterson). We come from academia as professors, consultancies to International organizations, International/ national non-profits, and our European (Dutch, German, Czech), South African, and American governments. We’ll discuss it as a ‘fishbowl’ of ideas.

The session’s abstract adds the confounding factor of program vs project versus portfolio-wide evaluations all-around sustainability.

Details on our session are below and why I’m juxtaposing it to the Nordic and Netherlands ex-posts in detail, comes next. As we note in our EES ’22 session description, “One of the classic complications in sustainability is dealing with short-term – long-term dilemmas. Interventions take place in a local and operational setting, affecting the daily lives of stakeholders. Sustainability is at stake when short-term activities are compromising the long-term interests of these stakeholders and future generations, for instance, due to a focus on the achievement of shorter-term results rather than ensuring durable impacts for participants… Learning about progress towards the SDGs or the daunting task of keeping a global temperature rise this century well below 2 degrees Celsius above pre-industrial levels, for instance, requires more than nationally and internationally agreed indicator-systems, country monitoring, and reporting and good intentions.”

But there are wider ambitions for most sustainability activities undertaken by a range of donors, policy actors, project implementers, and others: Sustainability “needs to span both human-social and natural-ecological systems’ time scales. Furthermore, long-term sustainability, in the face of climate change and SDGs, demands a dynamic view, with due attention for complexity, uncertainty, resilience, and systemic transformation pathways…. the need for a transformation of current evaluation systems – seeing them as nested or networked systems… Their focus may range from focused operational projects to the larger strategic programmes of which these projects are part, to again the larger policies that provide the context or drivers for these programmes. Analogue to these nested layers runs a time dimension, from the short-term projects (months to years), to multi-year programmes, to policies with outlooks of a decade or more.” 

When Preston did his research in 2020-21 which I oversaw, we focused on the projects precisely because that is where we believe ‘impact’ happens in a measurable way by participants and partners. Yet we found that many defined their parameters differently. Preston writes, “This paper focuses on what such research [on projects evaluated at least 2 years post-closure] yielded, not definitive findings of programs or multi-year country strategies that are funded for 20-30 years continuously, nor projects funded by country-level embassies which did not feature on the Ministry site. We focus on project bilateral project evaluations, not multilateral funding of sectors. We also …received input that Sweden’s EBA has a (non-project [not ex-post] portfolio of ‘country evaluations’ which looked back over 10 or even 20-year time horizons

So we present these compiled detailed studies on the Netherlands, Norway, Finland,  Sweden, and Denmark for your consideration. Can we arrive at a unified definition of ‘sustainability’ or imagine a unified ‘sustainability evaluation’ definition and scope? I hope so, will let you know after EES this week! What do you think, is it possible?

“Promises made and promises unfulfilled: Focusing evaluations after COP26” 2021’s Climate Conference reblog from the journal Evaluation

Reblogged from the journal EVALUATION,Volume: 28 issue: 1, page(s): 7-35, Article first published online: January 24, 2022; Issue published: January 1, 2022

 

“Leading evaluation practitioners were asked about lessons from the recent 26th Conference of the Parties (COP26) for evaluation practice. Contributors emphasize the importance of evaluating equity between rich and poor countries and other forms of climate injustice. The role of the evaluation is questioned: what can evaluation be expected to do on its own and what requires collaboration across disciplines, professions and civil society – and across generations? Contributors discuss the implications of the post-Glasgow climate ‘pact’ for the continued relevance of evaluation. Should evaluators advocate for the marginalized and become activists on behalf of sustainability and climate justice – as well as advocates of evidence? Accountability-driven and evidence-based evaluation is needed to assess the effectiveness of investments in adaptation and mitigation. Causal pathways in different settings and ‘theories of no-change’ are needed to understand gaps between stakeholder promises and delivery. Evaluators should measure unintended consequences and what is often left unmeasured, and be sensitive to failure and unanticipated effects of funded actions. Evaluation timescales and units of analysis beyond particular programmes are needed to evaluate the complexities of climate change, sustainability and to take account of natural systems. The implications for evaluation commissioning and funding are discussed as well as the role of evaluation in programme-design and implementation.”

Here is my article on sustainability, measurement and reporting:

Like many evaluators reading this, I am not a climate specialist but an international political economist, a Czech-American. Both my countries have polluted more than our fair share. Maybe like you, I feel responsible for those who polluted less but suffer more. Professionally, I focus on grassroots sustainability of ex-post project evaluations, including those funded by the Adaptation Fund, and consult on environmental, social and governance ‘impact’. I worry that aid impacts sustained through ingenious local efforts will not hold up to climate shocks for which our aid was not designed, and funding is insufficient.

Where to focus? Knowing what aspect of evaluation interests you, shapes which aspect of the COP26 juggernaut to examine. Results gaps between promises made versus actual change accomplished are an evaluator’s daily bread. Were I an evaluator of environmental processes such as deforestation, ocean acidification/ biodiversity, CO2 emissions, I could evaluate along the lines of the recent publication edited by Juha Uitto (2021) Evaluating Environment in International Development. Abel Gbala, an Ivoirien monitoring and evaluation expert, offers a range of roles evaluators take on, and two for climate change are

  1. Evaluator as a ‘judge (following Scriven) to investigate and justify the value of an evaluand, supported by both empirical facts and probative reasoning;
  2. Evaluator as ‘activist’, as argued by Bitar (2019), and Montrosse-Moorhead, et al. (2019: Chapter 3, 33) advocating for social justice and addressing the needs and interests of the vulnerable and disadvantaged.

Following the money and focusing on the centrality of justice and equity between rich and poorer/‘developing’ countries involves judging and being an activist with sharing results. This includes measuring how well the Global North has helped the Global South deal with the inequity in adapting to, mitigating or addressing the devastation of a range of climate change disproportionately caused by the Global North over two centuries. Notably, only small proportions of all financing get to indigenous and local communities (see Rainforest Foundation Norway, 2021USAID, 2021). Evaluating to whom funding goes is vital for sustainable results.

Many promises are unfulfilled

The 2015 Paris Agreement (United Nations Framework convention on Climate Change, 2016) promised fewer climate-harming emissions, yet the 60 biggest banks have invested 3.8 trillion in fossil fuels (Project Regeneration, 2020). Paris signatories promised US$100 billion climate funding a year, but the COP26 showed massive shortfalls. Not only have an insufficient US$55–US$80 billion a year been given since 2013 (Timperley, 2021), but in a recent Financial Times article by Hook and Kao (2021), Amar Bhattacharya, of the Brookings Institute, stated, ‘In terms of real impact of climate finance, and efficacy across different donors, there has been no development impact or climate impact study done to date’. A German climate watchdog confirms a massive gap if and how US$80 billion in 2019 has been spent, noting, ‘The absence of a detailed, publicly available account of this financing . . . risks all sorts of omissions: donors mis-labeling their funding [as “significant” [impactful], or money being misspent, or an under-estimation of the true volume of money required’ (Subramanian, 2021). Evaluators and auditors are needed to confirm that funding was allocated, disbursed and had an impact on climate change needs.

Needs are tenfold more

India and African countries state they need US$1–US$1.3 trillion in finance by 2030 (Rathi and Chaudhary, 2021). This is not unreasonable, given that ‘developing’ countries ‘are currently shouldering approximately $70 billion per year costs of adapting to climate change’ themselves. The Global South also wants funds to be more evenly split between adaptation (now 25%) to help them deal with sea-level rise and extreme weather events and mitigation (now 75%) (Pontecorvo, 2021). Why the imbalance towards mitigation? Because mitigation is remunerative to investors, companies and banks, who offer loans for countries to switch to clean energy or sell ‘carbon-offsets’. As noted by Timperley (2021), ‘just $20 billion went to adaptation projects in 2019’ versus UN-estimated needs of US$300 billion. It is also essential to measure the effectiveness of finance once it arrives and help those in the climate field see how such investments’ efficacy can be improved.

Where to go to measure costs and finance? One priority for evaluators is to know where to look for data on finance and costs on sustainability and adaptation. This is spread over many national and international databases and reports, and across private and public institutions. Burmeister et al. (2019) have a useful table that summarizes the many finance sources that could be used by evaluators when trying to track actual expenditures and investments on adaptation.

Proof of promises is key

Oxfam’s Climate Finance Shadow Report 2020 (Carty et al., 2020) helps judges and activists see that while donors reported giving US$59.5 billion in 2017 and 2018, ‘the true value. . . may be as little as $19-22.5 billion per year once loan repayments, interest, and other forms of over-reporting are stripped out’. Eighty percent was primarily given as loans, and a further 50 percent of this was non-concessional, requiring higher repayments from emerging countries. In short, our climate ‘largesse’ is increasing their indebtedness. Another watchdog looks at the recipient side. Climate Governance by Transparency International (2021) traces in-country corruption of the funds received. The International Financial Reporting Standards Foundation’s International Sustainability Standards Board questions corporate ‘greenwashing’. Other evaluations remind multilateral and bilateral donors not to claim what they cannot substantiate. Aid promises ‘sustainable development’. Climate funds such as the GEF could be delivering, but Čekan/ová and Legro (2022) examined the GEF’s 2019 report claim that 84 percent were sustainable post-project. ‘Can We Assume Sustained Impact? Verifying the Sustainability of Climate Change Mitigation Results’ showed no proof of ex-post project fieldwork or research to substantiate it. Worse, ‘in the absence of sufficient information regarding project sustainability, determining post-project greenhouse gas emission reductions is not possible, because these are dependent on the continuation of project benefits following project closure’.

It is vital to monitor and evaluate the gaps between promises made and actual change. Gaps include between the finance needed by developing/poorer countries and what is delivered; provable measurements of the impacts and effectiveness of finance given; and the knock-on effects of support for climate action, including indebtedness. As evaluators, we need champions willing to listen, for no one has to listen to evaluators, but much like years of the climate-science IPCC, perseverance and public interest, plus our collective survival on the line, measurements increasingly matter and drive imperative change. Our planet, institutions and many promises and fewer results need all of us.”

I also encourage readers to see the other 13 authors” fascinating submissions in Evaluation post-COP26. Also, many thanks to Elliot Stern, editor, for his support and for making this issue open-access for global learning.

Can We Assume Sustained Impact? Verifying the Sustainability of Climate Change Mitigation Results (reposting a book chapter)

So excited to have our chapter verifying the ‘sustainability’ of the Global Environment Facility Trust Fund (GEF) funded projects through examining two tranches of evaluations. My co-writer colleague Susan Legro did a brilliant job pointing out GreenHouse Gasses (GHG) emissions estimated reductions flaws. Given climate change is in full swing, we must trust the data we have.

It appeared in Transformational Change for People and the Planet: Evaluating Environment and Development Edited by  Juha I. Uitto and Geeta Batra. Enjoy!

Abstract

The purpose of this research was to explore how public donors and lenders evaluate the sustainability of environmental and other sectoral development interventions. Specifically, the aim is to examine if, how, and how well post project sustainability is evaluated in donor-funded climate change mitigation (CCM) projects, including the evaluability of these projects. We assessed the robustness of current evaluation practice of results after project exit, particularly the sustainability of outcomes and long-term impact. We explored methods that could reduce uncertainty of achieving results by using data from two pools of CCM projects funded by the Global Environment Facility (GEF).

Evaluating sustainable development involves looking at the durability and continuation of net benefits from the outcomes and impacts of global development project activities and investments in various sectors in the post project phase, i.e., from 2 to 20 years after donor funding ends.1 Evaluating the sustainability of the environment is, according to the Organisation for Economic Co-operation and Development (OECD, ), at once a focus on natural systems of “biodiversity, climate change, desertification and environment” (p.1) that will need to consider the context in which these are affected by human systems of “linkages between poverty reduction, natural resource management, and development” (p. 3). This chapter focuses more narrowly on the continuation of net benefits from the outcomes and impacts of a pool of climate change mitigation (CCM) projects (see Table 1). The sustainability of CCM projects funded by the Global Environment Facility (GEF), as in a number of other bilateral and multilateral climate funds, rests on a theory of change that a combination of technical assistance and investments contribute to successfully durable market transformation, thus reducing or offsetting greenhouse gas (GHG) emissions.

 

Table 1: Changes in OECD DAC Criteria from 1991 to 2019

1991

2019

SUSTAINABILITY:

SUSTAINABILITY: WILL THE BENEFITS LAST?

Sustainability is concerned with measuring whether the benefits of an activity are likely to continue after donor funding has been withdrawn. Projects need to be environmentally as well as financially sustainable.

The extent to which the net benefits of the intervention continue, or are likely to continue. Note: Includes an examination of the financial, economic, social, environmental, and institutional capacities of the systems needed to sustain net benefits over time. Involves analyses of resilience, risks, and potential trade-offs.

IMPACT:

IMPACT:

The positive and negative changes produced by a development intervention, directly or indirectly, intended or unintended. This involves the main impacts and effects resulting from the activity on the local social, economic, environmental, and other development indicators.

The extent to which the intervention has generated or is expected to generate significant positive or negative, intended or unintended, higher-level effects. . . . It seeks to identify social, environmental, and economic effects of the intervention that are longer-term or broader in scope.

Source: OECD/DAC Network on Development Evaluation, (); italics are emphasis added by Cekan

 

CCM projects lend themselves to such analysis, as most establish ex-ante quantitative mitigation estimates and their terminal evaluations often contain a narrative description and ranking of estimated sustainability beyond the project’s operational lifetime, including the achievement of project objectives. The need for effective means of measuring sustainability in mitigation projects is receiving increasing attention (GEF Independent Evaluation Office [IEO], ) and is increasingly important, as Article 13 of the Paris Agreement mandates that countries with donor-funded CCM projects report on their actions to address climate change (United Nations, ). As several terminal evaluations in our dataset stated, better data are urgently needed to track continued sustainability of past investments and progress against emissions goals to limit global warming.

Measuring Impact and Sustainability

Although impactful projects promoting sustainable development are widely touted as being the aim and achievement of global development projects, these achievements are rarely measured beyond the end of the project activities. Bilateral and multilateral donors, with the exception of the Japan International Cooperation Agency (JICA) and the U.S. Agency for International Development (USAID),2 have reexamined fewer than 1% of projects following a terminal evaluation, although examples exist of post project evaluations taking place as long as 15 years (USAID) and 20 years (Deutsche Gesellschaft fur Internationale Zusammenarbeit [GIZ]) later (Cekan, ). Without such fieldwork, sustainability estimates can only rely on assumptions, and positive results may in fact not be sustained as little as 2 years after closure. An illustrative set of eight post project global development evaluations analyzed for the Faster Forward Fund of Michael Scriven in 2017 showed a range of results: One project partially exceeded terminal evaluation results, two retained the sustainability assumed at inception, and the other five showed a decrease in results of 20%–100% as early as 2 years post-exit (Zivetz et al., ).

 

Since the year 2000, the U.S. government and the European Union have spent more than $1.6 trillion on global development projects, but fewer than several hundred post project evaluations have been completed, so the extent to which outcomes and impacts are sustained is not known (Cekan, ). A review of most bilateral donors shows zero to two post project evaluations (Valuing Voices, ). A rare, four-country, post project study of 12 USAID food security projects also found a wide variability in expected trajectories, with most projects failing to sustain expected results beyond as little as 1 year (Rogers & Coates, ). The study’s Tufts University team leaders noted that “evidence of project success at the time of exit (as assessed by impact indicators) did not necessarily imply sustained benefit over time.” (Rogers & Coates, , p. v.). Similarly, an Asian Development Bank (ADB) study of post project sustainability found that “some early evidence suggests that as many as 40% of all new activities are not sustained beyond the first few years after disbursement of external funding,” and that review examined fewer than 14 of 491 projects in the field (ADB, ). The same study described how assumed positive trajectories post funding fail to sustain and noted a

tendency of project holders to overestimate the ability or commitment of implementing partners—and particularly government partners—to sustain project activities after funding ends. Post project evaluations can shed light on what contributes to institutional commitment, capacity, and continuity in this regard. (ADB, , p. 1)

 

Learning from post project findings can be important to improve project design and secure new funding. USAID recently conducted six post project evaluations of water/sanitation projects and learned about needed design changes from the findings, and JICA analysed the uptake of recommendations 7 years after closure (USAID, ; JICA, ). As USAID stated in their  guidance,

An end-of-project evaluation could address questions about how effective a sustainability plan seems to be, and early evidence concerning the likely continuation of project services and benefits after project funding ends. Only a post project evaluation, however, can provide empirical data about whether a project’s services and benefits were sustained. (para. 9)

 

Rogers and Coates () expanded the preconditions for sustainability beyond only funding, to include capacities, partnerships, and ownership. Cekan et al. () expanded ex-post project methods from examining the sustainability of expected project outcomes and impacts post closure to also evaluating emerging outcomes, namely “what communities themselves valued enough to sustain with their own resources or created anew from what [our projects] catalysed” (para. 19). In the area of climate change mitigation, rigorous evaluation of operational sustainability in the years following project closure should inform learning for future design and target donor assistance on projects that are most likely to continue to generate significant emission reductions.

How Are Sustainability and Impact Defined?

The original 1991 OECD Development Assistance Committee (DAC) criteria for evaluating global development projects included sustainability, and the criteria were revised in 2019. The revisions related to the definition of sustainability and emphasize the continuation of benefits rather than just activities, and they include a wider systemic context beyond the financial and environmental resources needed to sustain those benefits, such as resilience, risk, and trade-offs, presumably for those sustaining the benefits. Similarly, the criteria for impact have shifted from simply positive/negative, intended/unintended changes to effects over the longer term (see Table 1).

 

In much of global development, including in GEF-funded projects, impact and sustainability are usually estimated only at project termination, “to determine the relevance and fulfilment of objectives, development efficiency, effectiveness, impact and [projected] sustainability” (OECD DAC, , p. 5). In contrast, actual sustainability can only be evaluated 2–20 years after all project resources are withdrawn, through desk studies, fieldwork, or both. The new OECD definitions present an opportunity to improve the measurement of sustained impact across global development, particularly via post project evaluations. Evaluations need to reach beyond projected to actual measurement across much of “sustainable development” programming, including that of the GEF.

 

GEF evaluations in recent years have been guided by the organization’s 2010 measurement and evaluation (M&E) policy, which requires that terminal evaluations “assess the likelihood of sustainability of outcomes at project termination and provide a rating” (GEF Independent Evaluation Office [IEO], p. 31). Sustainability is defined as “the likely ability of an intervention to continue to deliver benefits for an extended period of time after completion; projects need to be environmentally as well as financially and socially sustainable” (GEF IEO, , p. 27).

 

In 2017, the GEF provided specific guidance to implementing agencies on how to capture sustainability in terminal evaluations of GEF-funded projects (GEF, , para. 8 and Annex 2): “The overall sustainability of project outcomes will be rated on a four-point scale (Likely to Unlikely)”:

  • Likely (L) = There are little or no risks to sustainability;

  • Moderately Likely (ML) = There are moderate risks to sustainability;

  • Moderately Unlikely (MU) = There are significant risks to sustainability;

  • Unlikely (U) = There are severe risks to sustainability; and

  • Unable to Assess (UA) = Unable to assess the expected incidence and magnitude of risks to sustainability

 

Although this scale is a relatively common measure for estimating sustainability among donor agencies, it is not a measure that has been tested for reliability, i.e., whether multiple raters would provide the same estimate from the same data. It has also not been tested for construct validity, i.e., whether the scale is an effective predictive measure of post project sustainability. Validity issues include whether an estimate of risks to sustainability is a valid measure of the likelihood of post project sustainability, whether the narrative estimates of risk are ambiguous or double-barreled; and the efficacy of using a ranked, ordinal scale that treats sustainability as an either/or condition rather than a range (from no sustainability to 100% sustainability).

 

Throughout this chapter, we identify projects by their GEF identification numbers, with a complete table of projects provided in the appendix.

The Limits of Terminal Evaluations

Terminal evaluations and even impact evaluations that mostly compare effectiveness rather than long-term impact were referenced as sources for evaluating sustainability in the GEF’s 2017 Annual Report on Sustainability (GEF IEO, ). Although they can provide useful information on relevance, efficiency, and effectiveness, neither is a substitute for post project evaluation of the sustainability of outcomes and impacts, because projected sustainability may or may not occur. In a terminal evaluation of Mexican Sustainable Forest Management and Capacity Building (GEF ID 4149), evaluators made the case for ex-post project monitoring and evaluation of results:

There is no follow-up that can measure the consolidation and long-term sustainability of these activities. . . . Without a proper evaluation system in place, nor registration, it is difficult to affirm that the rural development plans will be self-sustaining after the project ends, nor to what extent the communities are readily able to anticipate and adapt to change through clear decision-making processes, collaboration, and management of resources. . . . They must also demonstrate their sustainability as an essential point in development with social and economic welfare from natural resources, without compromising their future existence, stability, and functionality. (pp. 5–9)3

 

Returning to a project area after closure also fosters learning about the quality of funding, design, implementation, monitoring, and evaluation and the ability of those tasked with sustaining results to do so. Learning can include how well conditions for sustainability were built in, tracked, and supported by major stakeholders. Assumptions made at design and final evaluation can then also be tested, along with theories of change (Sridharam & Nakaima, ). Finally, post project evaluations can verify the attributional claims made at the time of the terminal evaluation. As John Mayne explained in his  paper:

In trying to measure the performance of a program, we face two problems. We can often—although frequently not without some difficulty—measure whether or not these outcomes are actually occurring. The more difficult question is usually determining just what contribution the specific program in question made to the outcome. How much of the success (or failure) can we attribute to the program? What has been the contribution made by the program? What influence has it had? (p. 3)

 

In donor- and lender-funded CCM projects, emission reduction estimates represent an obvious impact measure. They are generally based on a combination of direct effects—i.e., reductions due to project-related investments in infrastructure—and indirect effects—i.e., reductions due to the replication of “market transformation” investments from other funding or an increase in climate-friendly practices due to improvements in the policy and regulatory framework (Duval, ; Legro, ). Both of these effects are generally estimated over the lifetime of the mitigation technology involved, which is nearly always much longer than the operational duration of a given project (see Table 2).

 

Table 2: Typology of GHG Reductions Resulting from Typical Project Interventions

Type of GHG reductions

Project lifetime (quarterly annual monitoring)

TERMINAL EVALUATION

Post project lifetime (post project evaluation)

Direct reductions

Reductions directly financed by donor-funded pilot project(s) or investment(s)

Continuing reductions from project-financed investments (through the end of the technology lifetime; e.g., 20 years for buildings, 10 years for industrial equipment, etc.)

Indirect reductions

Reductions from policy uptake (e.g., reduced fossil fuel use from curtailment of subsidies, spillover effects from tax incentives, increased government support for renewable energy due to strategy development) (co-) funded by the donor

Continuing reductions from policy uptake (e.g., reduced fossil fuel use from curtailment of subsidies, spillover effects from tax incentives, increased government support for energy efficiency or renewable energy due to strategy development)

Reductions from market transformation (changes in availability of financing, increased willingness of lenders, reduction in perceived risk) supported by pilot demonstrations and/or outreach and awareness raising (co-)funded by the donor

Continuing reductions from market transformation (changes in availability of financing, increased willingness of lenders, reduction in perceived risk) as a legacy of the pilot demonstrations and/or outreach and awareness raising funded by the donor-funded project

New reductions from the continuation of the investment or financing mechanism established by the donor-funded project

 

The increasing use of financial mechanisms such as concessional loans and guarantees as a component of donor-funded CCM projects, such as those funded by the Green Climate Fund (https://www.greenclimate.fund/), can also limit the ability of final evaluations to capture sustainability, because the bulk of subsequent investments in technologies that are assumed with revolving funds will not take place during the project lifetime. A 2012 paper by then-head of the GEF Independent Evaluation Office, Rob van den Berg, supported the need for post project evaluation and importantly included:

Barriers targeted by GEF projects, and the results achieved by GEF projects in addressing market transformation barriers . . . facilitate in understanding better whether the ex-post changes being observed in the market could be linked to GEF projects and pathways through which outcomes and intermediate states . . . [and] the extent GEF-supported CCM activities are reducing GHGs in the atmosphere . . . because it helps in ascertaining whether the incremental GHG reduction and/or avoidance is commensurate with the agreed incremental costs supported by GEF. . . . It is imperative that the ex-ante and ex-post estimates of GHG reduction and avoidance benefits are realistic and have a scientific basis. (GEF IEO, , p. 13)

 

This description of GHG-related impacts illustrates the difficulties associated with accurately drawing conclusions about sustainability from using a single scale to estimate “the likely ability [emphasis added] of an intervention to continue to deliver benefits for an extended period of time” (GEF IEO, , p. 35) due to several factors. First, the GEF’s 4-point scale is supposed to capture two different aspects of continuation: ongoing benefits from a project-related investment, and new benefits from the continuation of financing mechanisms. Without returning to evaluate the continued net benefits of the now-closed investment, such assumptions cannot be fully claimed. Second, the scale is supposed to capture benefits that can be estimated in a quantitative way (e.g., solar panels that offset the use of a certain amount of electricity from diesel generators); benefits that can be evaluated through policy or program evaluation (e.g., the introduction of a law on energy efficiency); and benefits that will require careful, qualitative study to determine impacts (e.g., training programs for energy auditors or awareness-raising for energy consumers, leading to knowledge and decision changes). Aggregating and weighing such an array of methods into one ranking is methodologically on shaky ground, especially without post project measurements to confirm whether results happened at any time after project closure.

Methodology

The impetus for this research was a sustainability analysis conducted by the GEF IEO that was summarized in the 2017 GEF Annual Performance Report (GEF IEO, ). The study stated: “The analysis found that outcomes of most of the GEF projects are sustained during the postcompletion period, and a higher percentage of projects achieve environmental stress reduction and broader adoption than at completion” (p. 17). Learning more about postcompletion outcomes and assessing how post project sustainability was evaluated was the aim of this work.

 

This chapter’s research sample consists of two sets of GEF project evaluations. We chose projects funded by the GEF because of the large size of the total project pool. For example, the Green Climate Fund lacks a large pool of mitigation projects that would be suitable for post project evaluation. Our first tranche was selected from the pool of CCM projects cited in the sustainability analysis, which included a range of projects with the earliest start date of 1994 and the latest closing date of 2013 (GEF IEO, ). These constituted $195.5 million dollars of investments. The pool of projects in the climate change focal area (n = 17), comprising one third of the GEF IEO sample, was then selected from the 53 projects listed in the report for further study. We then classified the selected projects by which ones had any mention of field-based post project verification according to an evaluability checklist (Zivetz et al., ). This list highlights methodological considerations including: (a) data showing overall quality of the project at completion, including M&E documentation needed on original and post project data collection; (b) time postcompletion (at least 2 years); (c) site selection criteria; and (d) proof that project results were isolated from concurrent programming to ascertain contribution to sustained impacts (Zivetz et al., ).

 

Next, we reviewed GEF documentation to identify any actual quantitative or qualitative measures of post project outcomes and impacts. These could include: (a) changes in actual energy efficiency improvements against final evaluation measures used, (b) sustained knowledge or dissemination of knowledge change fostered through trainings, (c) evidence of ownership, or (d) continued or increased dissemination of new technologies. Such verification of assumptions in the final documents typically explores why the assumptions were or were not met, and what effects changes in these assumptions would have on impacts, such as CO2 emissions projections.

 

The second tranche consisted of projects in the climate change focal area that were included in the 2019 cohort of projects for which the GEF received terminal evaluations. As the GEF 2019 Annual Performance Report explained:

Terminal evaluations for 193 projects, accounting for $ 616.6 million in GEF grants, were received and validated during 2018–2019 and these projects constitute the 2019 cohort. Projects approved in GEF-5 (33 percent), GEF-4 (40 percent) and GEF-3 (20 percent) account for a substantial share of the 2019 cohort. Although 10 GEF Agencies are represented in the 2019 cohort, most of these projects have been implemented by UNDP [United Nations Development Programme] (56 percent), with World Bank (15 percent) and UNEP [United Nations Environment Programme] (12 percent) also accounting for a significant share. (GEF IEO, , p. 9)

 

We added the second tranche of projects to represent a more current view of project performance and evaluation practice.

The climate change focal area subset consisted of 38 completed GEF projects, which account for approximately $155.7 million in GEF grants (approximately 20% of the total cohort and 25% of the overall cohort budget). Projects included those approved in 1995–1998 (GEF-1; n = 1) and 2003–2006 (GEF-3; n = 2), but 68% were funded in 2006–2010 (GEF-4; n = 26), and 24% in 2010–2014 (GEF-5; n = 9), making them more recent as a group than the 2019 cohort as a whole. Six GEF agencies were represented: Inter-American Development Bank (IDB), International Fund for Agricultural Development (IFAD), UNDP, UNEP, United Nations Industrial Development Organization (UNIDO), and the World Bank.

 

We eliminated three projects listed in the climate focal area subset from consideration in the second tranche because they had not been completed, leaving a pool of 35 projects. Ex-ante project documentation, such as CEO endorsement requests, and terminal evaluation reports were then reviewed for initial estimates of certain project indicators, such as GHG emission reductions, and ratings of estimated sustainability on the 4-point scale, including the narrative documentation that accompanied the ratings.

Findings

The question of whether post project sustainability was being measured was based on the first tranche of projects and on the sustainability analysis in which they were included. Most of the documents cited in the sustainability analysis were either terminal or impact evaluations focused on efficiency (GEF IEO, ), and most of the documents and report analysis focused on estimated sustainability. Of the 53 “postcompletion verification reports,” as they are referred to in the review (GEF IEO, , p. 62), we found only 4% to contain adequate information to support the analysis of sustainability. Our wider search for publicly available post project evaluations, which would have constituted an evidence base for sustained outcomes and environmental stress reduction and adoption cited in the GEF IEO 2019 analysis, did not identify any post project evaluations. We were unable to replicate the finding that “84% of these projects that were rated as sustainable at closure also had satisfactory postcompletion outcomes. . . . Most projects with satisfactory outcome ratings at completion continued to have satisfactory outcome ratings at postcompletion” (GEF IEO, , p. 3) or to compare the CCM subset of projects with this conclusion. The report stated that “the analysis of the 53 selected projects is based on 61 field verification reports. For 81 percent of the projects, the field verification was conducted at least four years after implementation completion [emphasis added].” However, we found no publicly accessible documentation that could be used to confirm the approach to field verification for 8 of the 17 projects.

 

Similarly, the available documentation for the projects lacked the most typical post project hallmarks, such as methods of post project data collection, comparisons of changes from final to post project outcomes and impacts at least 2 years post closure, and tracing contribution of the project at the funded sites to the changes. Documentation focused on a rating of estimated sustainability with repeated references to only the terminal evaluations and closure reports. In summary, of the 17 projects selected for review in the first tranche, 14 had data consisting of terminal evaluations, and none was 2–20 years post closure. We did not find publicly available evidence to support measurement of post project sustainability other than statements that such evidence was gathered in a handful of cases. Of the pool of 17 projects, only two (both from India) made any reference to post project data regarding the sectors of activity in subsequent years. However, these two were terminal evaluations within a country portfolio review and could not be substantiated with publicly accessible data.

 

We then screened the first tranche of projects using the Valuing Voices evaluability checklist (Zivetz et al., ):

  • High-quality project data at least at terminal evaluation, with verifiable data at exit: Of 14 projects rated for sustainability, only six were rated likely to be sustained and outcome and impact data were scant.

  • Clear ex-post methodology, sufficient samples: None of the evaluations available was a post project evaluation of sustainability or long-term impact. Although most projects fell within the evaluable 2–20 years post project (the projects had been closed 4–20 years), none had proof of return evaluation. There were no clear post project sampling frames, data collection processes including identification of beneficiaries/informants, site selection, isolating legacy effects of the institution or other concurrent projects, or analytic methods.

  • Transparent benchmarks based on terminal, midterm, and/or baseline data on changes to outcomes or impacts: M&E documents show measurable targets and indicators, baseline vs. terminal evaluations with methods that are comparable to methods used in the post project period: For some of the 17 projects, project inception documents and terminal evaluations were available; in other cases, GEF evaluation reviews were available. Two had measurable environmental indicators that compared baseline to final, but none were after project closure.

  • Substantiated contribution vs. attribution of impacts: Examples of substantiated contribution were not identified.

 

Evaluation reports revealed several instances for which we could not confirm attribution. For example, evaluation of the project Development of High Rate BioMethanation Processes as Means of Reducing Greenhouse Gas Emissions (GEF ID 370), which closed in 2005, referenced the following subsequent market information:

As of Nov 2012, capacity installed from waste-to-energy projects running across the country for grid connected and captive power are 93.68MW and 110.74 MW respectively [versus 3.79KW from 8 sub-projects and 1-5 MW projects]. . . . The technologies demonstrated by the 16 sub-projects covered under the project have seen wide-scale replication throughout the country. . . . An installed capacity of 201.03MW within WTE [waste to energy] projects and the 50% of this is attributed to the GEF project. (GEF IEO, , vol. 2, p. 64)

 

Claims of “the technical institutes strengthened as a result of the project were not fully effective at the time of project completion but are now actively engaged in the promotion of various biomethanation technologies” are unsubstantiated in publicly available information; as a result, the ex-post methods of contribution/attribution data are not clear. Another project in India, Optimizing Development of Small Hydel [hydroelectric] Resources in Hilly Areas (GEF ID 386), projected that later investments in the government’s 5-year plans would happen, and the resulting hydropower production would be attributable to the original project (GEF IEO, ); again, this attributional analysis was not documented. Analysis of a third project in India, Coal Bed Methane Capture and Commercial Utilization (GEF ID 325), which closed in 2008, claimed results that could not be reproduced: “Notable progress has been made through replication of projects, knowledge sharing, and policy development” and “expertise was built” (GEF IEO, , Vol. 2, p. 90). Further claims that the project contributed to “the total coal bed methane production in the country and has increased to 0.32 mmscmd [million metric standard cubic meters per day], which is expected to rise to 7.4 mmscmd by the end of 2014” is without proof. The evaluation reported estimates of indirect GHG emission reduction, based on postcompletion methane gas production estimates of 0.2 million m3 per day:

1.0 Million tons equivalent per year, considering an adjustment factor of 0.5 as the GEF contribution [emphasis added], the indirect GHG emission reduction due to the influence of the project is estimated to be 0.5 million tons of CO2 equivalent per annum (2.5 million tons over the lifetime period of 5 years). (GEF IEO, , Vol. 2, p. 91)

 

Yet without verification of coal bed methane capture and commercial utilization continuing, this impact cannot be claimed.

How Is Sustainability Being Captured?

Fifteen of the 17 CCM projects we reviewed in the first tranche were rated on a 4-point scale at terminal evaluation. Of those 15, 12 had overall ratings of either satisfactory or marginally satisfactory, and one highly satisfactory overall. Eleven of the sustainability ratings were either likely or marginally likely. Only two projects were rated marginally unlikely overall or for sustainability, and only one project received marginally unlikely in both categories (the Demand Side Management Demonstration energy conservation project that ended in 1999 [GEF ID 64]). Although none of the documents mentioned outcome indicators, eight of the 17 rated estimated CO2 direct and indirect impacts.

 

In the second pool of projects—the CCM subset of the 2019 cohort—63% of the projects were rated in the likely range for sustainability (n = 22; nine were rated likely and 13 marginally likely). This is slightly higher than the 2019 cohort as a whole, in which 59% were rated in the likely range. In turn, the 2019 annual performance report noted that “the difference between the GEF portfolio average and the 2019 cohort is not statistically significant for both outcome and sustainability rating” (GEF IEO, , p. 9). It is slightly lower than the percentage of CCM projects receiving an overall rating of marginally likely or higher in the 2017 portfolio review (68%, n = 265; GEF IEO, , p. 78).

 

In this second set of projects, only two received a rating of marginally unlikely and only one received a sustainability rating of unlikely. The remainder of the projects could not be classified using the 4-point rating scale, either because they had used an either/or estimate (one project), a 5-point scale (one project), or an estimate based on the assessment of risks to development outcome (two projects). Six projects or could not be assessed due to the absence of a publicly accessible terminal evaluation in the GEF and implementing agency archives.

How Effectively Is Sustainability Being Captured?

Throughout the first set of reports on which the sustainability was claimed, “84% of these projects that were rated as sustainable at closure also had satisfactory postcompletion outcomes, as compared with 55% percent of the unsustainable projects” (GEF IEO, , p. 29). The data did not support the claim, even during implementation.

  • As a Brazilian project (GEF ID 2941) showed, sustainability is unlikely when project achievements are weak, and exit conditions and benchmarks need to be clear: The exit strategy provided by IDB Invest77 is essentially based on financial-operational considerations but does not provide answers to the initial questions how an EEGM [energy efficiency guarantee mechanism] should be shaped in Brazil, how relevant it is and for whom, and to whom the EEGM should be handed over (p. 25).

  • In Russia, the terminal evaluation for an energy efficiency project (GEF ID 292) cited project design flaws that seemed to belie its sustainability rating of likely: “From a design-for-replication point of view the virtually 100% grant provided by the GEF for project activities is certainly questionable” (Global Environment Facility Evaluation Office [GEF EO], , p. 20). Further, the assessment that “the project is attractive for replication, dissemination of results has been well implemented, and the results are likely to be sustainable [emphasis added] for the long-term, as federal and regional legislation support is introduced” (GEF EO, , p. 39), makes a major assumption regarding changes in the policy environment. (In fact, federal legislation was introduced 2 years post project, and the extent of enforcement would require examination.)

  • A Pacific regional project (GEF ID 1058) was rated as likely to be sustained, but its report notes that it “does not provide overall ratings for outcomes, risks to sustainability, and M&E” (p. 1).

  • The Renewable Development Energy project in China (GEF ID 446) that closed in 2007 was evaluated in 2009 (not post project, but a delayed final evaluation). The report considered the project sustainable with a continued effort to support off-grid rural electrification, claiming, “the market is now self-sustaining, and thus additional support is not required” (p. 11). The project estimated avoided CO2 emissions and cited 363% as achieved; however, calculations were based on 2006 emissions values for thermal power sector and data from all wind farms in China, without a bottom-up estimate. The interpolation of this data lacks verification.

  • Similar sampling issues emerge in a project in Mexico (GEF ID 643): “A significant number of farmers . . . of an estimated 2,312 farmers who previously had had no electricity” (p. 20) saw their productivity and incomes increase as a result of their adoption of productive investments (e.g., photovoltaic-energy water-pumping systems and improved farming practices). A rough preliminary estimate is extrapolated from an evaluation of “three [emphasis added] beneficiary farms, leading to the conclusion that in these cases average on-farm increases in income more than doubled (rising by139%)” (p. 21).

 

Baseline to terminal evaluation comparisons were rare, with the exception of photovoltaic energy projects in China and Mexico, and none were post project. Two were mid-term evaluations, which could not assess final outcomes much less sustainability. Ex-post project evaluations far more typically focus on the contributions that projects made, because only in rare cases can the attribution be isolated, especially for a project pool, where the focus is often on creating an enabling environment reliant on a range of actors. One such example is the Indian energy efficiency project approved in 1998 (GEF ID 404), in which

the project resulted in a favorable environment for energy-efficiency measures and the sub-projects inspired many other players in similar industries to adopt the demonstrated technologies. Although quantitative data for energy saved by energy efficiency technologies in India is not available, it is evident that due to the change in policy and financial structure brought by this project, there is an increase in investment in energy efficiency technologies in the industries. (GEF IEO, , Vol. 2., p. 95)

 

And while such GEF evaluators are asking for ex-post evaluation, in an earlier version of this book, Evaluating Climate Change Action for Sustainable Development (Uitto et al., ), the authors encouraged us to be “modest” in expectations of extensive ex-post evaluations and exploration of ex-post’s confirmatory power seemingly has not occurred:

The expectations have to be aligned with the size of the investment. The ex-post reconstruction of baselines and the assessment of quantitative results is an intensive and time-consuming process. If rigorous, climate change-related quantitative and qualitative data are not available in final reports or evaluations of the assessed projects, it is illusive to think that an assessment covering a portfolio of several hundred projects is able to fill that gap and to produce aggregated quantitative data, for example on mitigated GHG emissions. When producing data on proxies or qualitative assessments, the expectations must be realistic, not to say modest. (p. 89)

Project Evaluability

Following an analysis of the sustainability estimates in the first pool of projects, we screened project documentation and terminal evaluations for conditions that foster sustainability during planning, implementation, and exit. We also analyzed how well the projects reported on factors that could be measured in a post project evaluation and factors that would predispose projects to sustainability. These sustained impact conditions consisted of the following elements: (a) resources, (b) partnerships and local ownership, (c) capacity building, (d) emerging sustainability, (e) evaluation of risks and resilience, and (f) CO2 emissions (impacts).

 

Although documentation in evaluations did not verify sustainability, many examples exist of data collection that could support post project analyses of sustainability and sustained impacts in the future. Most reports cited examples of resources that had been generated, partnerships that had been fostered for local ownership and sustainability, and capacities that had been built through training. Some terminal evaluations also captured emerging impacts due to local efforts to sustain or extend impacts of the project that had not been anticipated ex-ante.

 

The Decentralized Power Generation project (GEF ID 4749) in Lebanon provides a good example of a framework to collect information on elements of sustainability planning at terminal (see Table 3).

 

Table 3: Sustainability Planning from a Decentralized Power Generation Project in Lebanon (GEF ID 4749)

Resources

Are there financial risks that may jeopardize the sustainability of project outcomes?

What is the likelihood of financial and economic resources not being available once GEF grant assistance ends?

Ownership

What is the risk, for instance, that the level of stakeholder ownership (including ownership by governments and other key stakeholders) will be insufficient to allow for the project outcomes/benefits to be sustained?

Do the various key stakeholders see that it is in their interest that project benefits continue to flow?

Is there sufficient public/stakeholder awareness in support of the project’s long-term objectives?

Partnerships

Do the legal frameworks, policies, and governance structures and processes within which the project operates pose risks that may jeopardize sustainability of project benefits?

Benchmarks, risks, & resilience

Are requisite systems for accountability and transparency, and required technical know-how, in place?

Are there ongoing activities that may pose an environmental threat to the sustainability of project outcomes?

Are there social or political risks that may threaten the sustainability of project outcomes?

Source: 4749 Terminal Evaluation, p. 45. Note: Capacity Building and Emerging Sustainability were missing from project 4749

 

Tangible examples of the above categories at terminal evaluations include the following.

Resources

The most widespread assumption for sustainability was sufficient financial and in-kind resources, often reliant on continued national investments or new private international investments, which could be verified. National resources that could sustain results include terminal evaluation findings such as:

Funding for fuel cell and electric vehicle development by the Chinese Government had increased from Rmb 60 million (for the 1996-2000 period) to more than Rmb 800 million (for the 2001-2005 period). More recently, policymakers have now targeted hydrogen commercialization for the 2010-2020 period. (GEF ID 445, p. 17)

 

Another example is: “About 65 percent of [Indian] small Hydro electromechanical Equipment is sourced locally” (GEF ID 386; GEF IEO, , Vol.2, p. 76). The terminal evaluation of a global IFC project stated that “Moser Baer is setting up 30 MW solar power plants with the success of the 5 MW project. Many private sector players have also emulated the success of the Moser Baer project by taking advantage of JNNSM scheme” (GEF ID 112, p. 3).

Local Ownership and Partnerships

The Russian Market Transformation for EE Buildings project (GEF ID 3593) showed in its recommendation to governmental stakeholders that their ownership would be essential for sustainability, describing “a suitable governmental institution to take over the ownership over the project web site along with the peer-to-peer network ensuring the sustainability of the tools [to] support the sustainability of the project results after the project completion” (p. xi). An Indian project (GEF ID 386) noted how partnerships could sustain outcomes:

By 2001, 16 small hydro equipment manufacturers, including international joint ventures (compared to 10 inactive firms in 1991) were operational. . . . State government came up with policies with financial incentives and other promotional packages such as help in land acquisition, getting clearances, etc. These profitable demonstrated projects attracted private sector and NGOs to set up similar projects. (GEF IEO, , Vol. 2, p. 74)

Capacity Building

The Renewable Energy for Agriculture project in Mexico (GEF ID 643) established the “percentage of direct beneficiaries surveyed who learned of the equipment through FIRCO’s promotional activities” (86%), “number of replica renewable energy systems installed” (847 documented replicas), and “total number of technicians and extensionists trained in renewable energy technologies” (p. 33). This came to 3022, or 121% of the original goal of 2500, which provides a good measure of how the project exceeded this objective.

Emerging Sustainability

Recent post project evaluations also address what emerged after the project that was unrelated to the existing theory of change. These emerging findings are rarely documented in terminal evaluations, but some projects in the first pool included information about unanticipated activities or outcomes at terminal evaluation, and these could be used for future post project fieldwork follow-up. As a consequence of the hydroelectric resource project, for example, the Indian Institute “developed and patented the designs for water mills” (GEF ID 386; GEF IEO, , Vol. 2, p. 73). The terminal evaluation for another project stated that “following the UNDP-GEF project, the MNRE [Ministry of New and Renewable Energy] initiated its own programs on energy recovery from waste. Under these programs, the ministry has assisted 14 projects with subsidies of US$ 2.72 million” (GEF ID 370; GEF IEO, , Vol. 2, p. 62).

Benchmarks, Risks, and Resilience

As the GEF’s 2019 report itself noted, “The GEF could strengthen its approach to assessing sustainability further by explicitly addressing resilience” (GEF IEO, , p. 33). Not doing so is a risk, as our climate changes. Two evaluations noted “no information on environmental risks to project sustainability;” these were the Jamaican pilot on Removal of Barriers to Energy Efficiency and Energy Conservation (GEF ID 64; p. 68) and a Pacific regional project (GEF ID 1058). For likelihood of sustainability, the Jamaican project was rated moderately unlikely and the Pacific Islands project was rated likely but “does not provide overall ratings for outcomes, risks to sustainability, and M&E” other than asserting that

the follow-up project, which has been approved by the GEF, will ensure that the recommendations entailed in the documents prepared as part of this project are carried out. Thus, financial risks to the benefits coming out of the project are low. (p. 3)

Greenhouse Gas Emissions (Impacts)

In GEF projects, timeframe is an important issue, which makes post project field verification that much more important. As the GEF IEO stated in 2018, “Many environmental results take more than a decade to manifest. Also, many environmental results of GEF projects may be contingent on future actions by other actors.” (GEF IEO, , p. 34).

Uncertainty and Likelihood Estimates

Estimating the likelihood of sustainability of greenhouse gas emissions at terminal evaluation raises another challenge: the relatively high level of uncertainty concerning the achievement of project impacts related to GHG reduction. GHG reductions are the primary objective stated in the climate change focal area, and they appear as a higher level impact across projects regardless of the terminology used. For a global project on bus rapid transit and nonmotorized transport, the objective was to “reduce GHG emissions for transportation sector globally” (GEF ID 1917, p. 9). For a national project on building sector energy efficiency, the project goal was “the reduction in the annual growth rate of GHG emissions from the Malaysia buildings sector” (GEF ID 3598; Aldover & Tiong, , p. i). For a land management project in Mexico, the project objective was to “mitigate climate change in the agricultural units selected . . . including the reduction of emissions by deforestation and the increase of carbon sequestration potential” (GEF ID 4149, p. 21). For a national project to phase out ozone-depleting substances, the project objective was to “reduce greenhouse gas emissions associated with industrial RAC (refrigeration and air conditioning) facilities in The Gambia” (GEF ID 5466, p. vii). Clearly, actual outcomes in GHG emissions need to be considered in any assessment of the likelihood of sustainability of outcomes.

 

Unlike projects in the carbon finance market, GEF projects estimate emissions for a project period that usually exceeds the duration of the GEF intervention. In most cases, ex-ante estimated GHG reductions in the post project period are larger than estimated GHG reductions during the project lifetime. In practice, this means that for projects for which the majority of emissions will occur after the terminal evaluation, evaluators are being asked to estimate the likelihood that benefits will not only continue, but will increase due to replication, market transformation, or changes in the technology or enabling environment. Table 4 provides several examples from the GEF 2019 cohort of how GHG reductions may be distributed over the project lifecycle.

 

Table 4: Distribution of Estimated GHG Reductions Ex-Ante for Selected Projects in the CCM Subset of the GEF 2019 Cohort

GEF ID

Country

Sub-Sector

Ex-ante GHG reduction estimates

% of reductions achieved by the terminal evaluation

During project lifetime (tCO2e)

Total reductions (tCO2e)

2941

Brazil

EE Buildings

705,000

9,588,000

7

2951

China

EE Financing

5,400,000

111,500,000

5

3216

Russia

EE Standards / Labels

7,820,000

123,600,000

6

3555

India

EE Buildings

454,000

5,970,000

8

3593

Russia

EE Industry

0

3,800,000

0

3598

Malaysia

EE Buildings

2,002,000

18,166,000

11

3755

Vietnam

EE Lighting

2,302,000

5,268,000

44

3771

Philippines

EE Industry

560,000

560,000

100

Sources: 2941 Project Document, pp. 35–37; 2951 PAD/CEO Endorsement Request, p. 88; 3216 Project Document, pp. 80–90; 3555 Terminal Evaluation; 3593 Terminal Evaluation, p. 23; 3598 Terminal Evaluation, p. 24; 3755 GEF CEO Endorsement Request; 3771 Terminal Evaluation pp. 8–9

 

The range in Table 4 shows the substantial variation in uncertainty when estimating the likelihood of long-term project impacts. For projects designed to achieve all of their emission reductions during their operational lifetimes, the achievement of GHG reductions can be verified as a part of the terminal evaluation. However, most projects assume that nearly all estimated GHG reductions will occur in the post project period, so uncertainty levels are much higher and estimates may be more difficult to compile. In other evaluations, evaluators may identify inconsistent GHG estimates (e.g., GEF ID 4157 and 5157), or recommend that the ex-ante estimates be downsized (e.g., GEF ID 3922, 4008, and 4160). These trends may also be difficult to capture in likelihood estimates.

Conclusions and Recommendations

While sustainability has been estimated in nearly all of the projects in the two pools we considered, it has not been measured. Assessing the relationship between projected sustainability and actual post project outcomes was not possible due to insufficient data. Further, findings from the first pool of climate change mitigation projects did not support the conclusion that “outcomes of most of the GEF projects are sustained during the postcompletion period” (GEF IEO, , p. 17). In the absence of sufficient information regarding project sustainability, determining post project GHG emission reductions is not possible, because these are dependent on the continuation of project benefits following project closure.

 

We also conclude that although the 4-point rating scale is a common tool for estimating the likelihood of sustainability, the measure itself has not been evaluated for reliability or validity. The scale is often used to summarize diverse trends in the midst of varying levels of uncertainty limits. The infrequency of the unlikely rating in terminal evaluations may result from this limitation—evaluators believe that some benefits (greater than 0%) will continue. However, the 4-point scale cannot convey an estimate of what percentage of benefits will continue. Furthermore, the use of market studies to assess sustainability is not effective in the absence of attributional analysis linking results to the projects that ostensibly caused change.

 

As a result, the current evaluator’s toolkit still does not provide a robust means of estimating post project sustainability and is not suitable as a basis for postcompletion claims. That said, M&E practices in the CCM projects we studied supported the collection of information that documented conditions (e.g., resources, partnerships, capacities, etc.) in a way that projects could be evaluable, or suitable for post project evaluation. We recommend that donors provide financial and administrative support for project data repositories to retain data in-country at terminal evaluation for post project return and country-level learning, and include evaluability (control groups, sampling sizes, and sites selected by evaluability criteria) in the assessment of project design. We also recommend sampling immediately from the 56 CCM projects in the two sets of projects that have been closed at least 2 years.

 

Donors’ allocation of sufficient resources for CCM project evaluations would allow verification of actual long-term, post project sustainability using the OECD DAC () definition of “the continuation of benefits from a development intervention after major development assistance has been completed” (p. 12). It would also enable evaluators to consider enumerating project components that are sustained rather than using an either/or designation (sustained/not sustained). Evaluation terms of reference should clarify the methods used for contribution vs. attribution claims, and they should consider decoupling estimates of direct and indirect impacts, which are difficult to measure meaningfully in a single measure. For the GEF portfolio specifically, the development of a postcompletion verification approach could be expanded from the biodiversity focal area to the climate change focal area (GEF IEO, ), and lessons could also be learned from the Adaptation Fund’s () commissioned work on post project evaluations. Bilateral donors such as JICA have developed rating scales for post project evaluations that assess impact in a way that captures both direct and indirect outcomes (JICA, ).

 

Developing country parties to the Paris Agreement have committed to providing “a clear understanding of climate change action” in their countries under Article 13 of the agreement (United Nations, ), and donors have a clear imperative to press for continued improvement in reporting on CCM project impacts and using lessons learned to inform future support.

Footnotes

  1. 1.

    We use the term “postproject” evaluations to distinguish these longer term evaluations from terminal evaluations, which typically occur within 3 months of the end of donor funding. While some donors (JICA, ; USAID, ) use the term “ex-post evaluation” to refer to evaluations distinct from the terminal/final evaluation and occurring 1 year or more after project closure, other donors use the terms “terminal evaluation” and “ex-post evaluation” synonymously. Other terms include postcompletion, post-closure, and long-term impact.

  2. 2.

    In a  meta-evaluation, Hageboeck et al. found that only 8% of projects in the 2009–2012 USAID PPL/LER evaluation portfolio (26 of 315) were evaluated post-project following the termination of USAID funding.

  3. 3.

    Page numbers provided with GEF ID numbers only refer to project terminal evaluations; see Appendix.

References

  1. Adaptation Fund. (2019). Report of the Adaptation Fund Board, note by the chair of the Adaptation Fund Board – Addendum. AFB/B.34–35/3. Draft – 8 November 2019. https://www.adaptation-fund.org/document/report-of-the-adaptation-fund-board-note-by-the-chair-of-the-adaptation-fund-board-addendum/
  2. Aldover, R. Z., & Tiong, T. C. (2017). UNDP/GEF project PIMS 3598: Building sector energy efficiency project (BSEEP): Terminal evaluation report. Global Environment Facility and United Nations Development Programme. https://erc.undp.org/evaluation/evaluations/detail/8919
  3. Asian Development Bank. (2010). Post-completion sustainability of Asian Development Bank-assisted projects. https://www.adb.org/documents/post-completion-sustainability-asian-development-bank-assisted-projects
  4. Cekan, J. (2015, March 13). When funders move on. Stanford Social Innovation Review. https://ssir.org/articles/entry/when_funders_move_on#
  5. Cekan, J., Zivetz, L., & Rogers, P. (2016). Sustained and emerging impacts evaluation. Better Evaluation. https://www.betterevaluation.org/en/themes/SEIE
  6. Duval, R. (2008). A taxonomy of instruments to reduce greenhouse gas emissions and their interactions. Organisation for Economic Co-operation and Development.  https://doi.org/10.1787/236846121450.CrossRefGoogle Scholar
  7. Global Environment Facility. (2017). Guidelines for GEF agencies in conducting terminal evaluation for full-sized projects. https://www.gefieo.org/evaluations/guidelines-gef-agencies-conducting-terminal-evaluation-full-sized-projects
  8. Global Environment Facility Evaluation Office. (2008). Evaluation of the catalytic role of the GEFhttps://www.gefieo.org/sites/default/files/ieo/ieo-documents/gef-catalytic-role-qualitative-analysis-project-documents.pdf
  9. Global Environment Facility Independent Evaluation Office. (2010). GEF monitoring and evaluation policyhttps://www.gefieo.org/sites/default/files/ieo/evaluations/gef-me-policy-2010-eng.pdf
  10. Global Environment Facility Independent Evaluation Office. (2012). Approach paper: Impact evaluation of the GEF support to CCM: Transforming markets in major emerging economies. https://www.gefieo.org/sites/default/files/ieo/ieo-documents/ie-ccm-markets-emerging-economies.pdf
  11. Global Environment Facility Independent Evaluation Office. (2013). Country portfolio evaluation (CPE) India. http://www.gefieo.org/evaluations/country-portfolio-evaluation-cpe-india
  12. Global Environment Facility Independent Evaluation Office. (2017). Climate change focal area study. https://www.thegef.org/council-meeting-documents/climate-change-focal-area-study
  13. Global Environment Facility Independent Evaluation Office. (2018). Sixth overall performance study of the GEF: The GEF in the changing environmental finance landscape. https://www.thegef.org/sites/default/files/council-meeting-documents/GEF.A6.07_OPS6_0.pdf
  14. Global Environment Facility Independent Evaluation Office. (2019a). Annual Performance Report 2017https://www.gefieo.org/evaluations/annual-performance-report-apr-2017
  15. Global Environment Facility Independent Evaluation Office. (2019b). A methodological approach for post-project completionhttps://www.gefieo.org/council-documents/methodological-approach-post-completion-verification
  16. Global Environment Facility Independent Evaluation Office. (2020). Annual performance report 2019https://www.gefieo.org/evaluations/annual-performance-report-apr-2019
  17. Hageboeck, M., Frumkin, M., & Monschein S. (2013). Meta-evaluation of quality and coverage of USAID evaluations. USAID. https://www.usaid.gov/evaluation/meta-evaluation-quality-and-coverage
  18. Japan International Cooperation Agency. (2004). Issues in ex-ante and ex-post evaluation. In JICA Guideline for Project Evaluation: Practical Methods for Project Evaluation (pp. 115–197). https://www.jica.go.jp/english/our_work/evaluation/tech_and_grant/guides/pdf/guideline01-01.pdf
  19. Japan International Cooperation Agency. (2017). Ex-post evaluation results. In JICA annual evaluation report 2017 (Part II, pp. 1–34). https://www.jica.go.jp/english/our_work/evaluation/reports/2017/c8h0vm0000d2h2gq-att/part2_2017_a4.pdf
  20. Japan International Cooperation Agency. (2020a). Ex-post evaluation (technical cooperation). https://www.jica.go.jp/english/our_work/evaluation/tech_and_grant/project/ex_post/index.html
  21. Japan International Cooperation Agency. (2020b). Ex-post evaluation (ODA loan). https://www.jica.go.jp/english/our_work/evaluation/oda_loan/post/index.html
  22. Legro, S. (2010, June 9–10). Evaluating energy savings and estimated greenhouse gas emissions in six projects in the CIS: A comparison between initial estimates and assessed performance [paper presentation]. International Energy Program Evaluation Conference, Paris, France. https://energy-evaluation.org/wp-content/uploads/2019/06/2010-paris-027-susan-legro.pdf
  23. Mayne, J. (2001). Assessing attribution through contribution analysis: Using performance measures sensibly. The Canadian Journal of Program Evaluation, 16(1), 1–24.Google Scholar
  24. OECD/DAC Network on Development Evaluation. (2019). Better criteria for better evaluation: Revised evaluation criteria definitions and principles for use. Organisation for Economic Co-operation and Development. http://www.oecd.org/dac/evaluation/revised-evaluation-criteria-dec-2019.pdf
  25. Organisation for Economic Co-operation and Development. (2015). OECD and post-2015 reflections. Element 4, Paper 1: Environmental Sustainabilityhttps://www.oecd.org/dac/environment-development/FINAL%20POST-2015%20global%20and%20local%20environmental%20sustainability.pdf
  26. Organisation for Economic Co-operation and Development, Development Assistance Committee. (1991). DAC criteria for evaluating development assistance. https://www.oecd.org/dac/evaluation/2755284.pdf
  27. Rogers, B. L., & Coates, J. (2015). Sustaining development: A synthesis of results from a four-country study of sustainability and exit strategies among development food assistance projects. FANTA III, Tufts University, & USAID. https://www.fantaproject.org/research/exit-strategies-ffp
  28. Sridharam, S., & Nakaima, A. (2019). Till time (and poor planning) do us part: Programs as dynamic systems—Incorporating planning of sustainability into theories of change. The Canadian Journal of Program Evaluation. https://evaluationcanada.ca/system/files/cjpe-entries/33-3-pre005.pdf
  29. Uitto, J., Puri, J., & van den Berg, R. (2017). Evaluating climate change action for sustainable development. Global Environment Facility Independent Evaluation Office. https://www.gefieo.org/sites/default/files/ieo/documents/files/cc-action-for-sustainable-development_0.pdf
  30. United Nations. (2015, December 12). Paris agreementhttps://unfccc.int/sites/default/files/english_paris_agreement.pdf
  31. United States Agency for International Development. (2018). Project evaluation overview. https://www.usaid.gov/project-starter/program-cycle/project-design/project-evaluation-overview
  32. United States Agency for International Development. (2019). USAID’s impact: Ex-post evaluation serieshttps://www.globalwaters.org/resources/ExPostEvaluations
  33. Valuing Voices. (2020). Catalysts for ex-post learninghttps://valuingvoices.com/catalysts-2/
  34. Zivetz, L., Cekan, J., & Robbins, K. (2017a). Building the evidence base for post project evaluation: A report to the faster forward fund. Valuing Voices. https://valuingvoices.com/wp-content/uploads/2013/11/The-case-for-post-project-evaluation-Valuing-Voices-Final-2017.pdf
  35. Zivetz, L., Cekan, J., & Robbins, K. (2017b). Checklists for sustainability. Valuing Voices. https://valuingvoices.com/wp-content/uploads/2017/08/Valuing-Voices-Checklists.pdf

Copyright information

 

© The Author(s) 2022

Open AccessThis chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Cite: Cekan J., Legro S. (2022) Can We Assume Sustained Impact? Verifying the Sustainability of Climate Change Mitigation Results. In: Uitto J.I., Batra G. (eds) Transformational Change for People and the Planet. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-78853-7_8

 

Follow our path on Ex-Post Sustainability and Resilience Seasonal Joy

Follow our path on Ex-Post Sustainability and Resilience Seasonal Joy

Rarely do we get to teach, innovate, learn, and expand a hidden corner of one’s field. This is what is I am experiencing, and the Fund is sharing. Here is the Adaptation Fund’s ex-post project evaluation of sustainability and resilience path and progress in 2021.

 

I am quoting liberally and highlighting our work from the Adaptation Fund’s website where their commitment to learning from what lasts is clear. “Ex post evaluations are a key element of the AF-TERG FY21-FY23 strategy and work programme, originating from the request of the Adaptation Fund Board to develop post-implementation learning for Fund projects and programmes and provide accountability of results financed by the Fund. They intend to evaluate aspects of both sustainability of outcomes and climate resilience, and over time feed into ex-post-evaluation-informed adjustments within the Fund’s Monitoring Evaluation and Learning (MEL) processes.”

 

How are we defining sustainability’s path to evaluate it? Here is a flowchart from our training:

 

There are four phases from 0 to 3:
Phase 0 Foundational Review: Not only was this work preceded by months of background research on both evaluability of their young portfolio (e.g., under 20 of the 100 projects funded were closed at least three years, a selection criteria we had) and secondary research on evidence of ex-post sustainability evaluation in climate change/ resilience across the Adaptation Fund’s sectors.

Phase 1 Framework and Pilots Shortlist: Our Phase 1 report from mid-2021 provided an overview of the first stage of ex-post evaluations, outlining methods and identifying a list of potential projects for ex-post evaluation pilots from the Fund’s 17 completed, evaluated projects. The framework presented in the report introduced possible methods to evaluate the sustainability of project outcomes, considering the characteristics, strengths, and weaknesses of the Fund portfolio. It also presents an analysis tool to assess climate resilience, bearing in mind that this area is pivotal to climate change adaptation yet has rarely been measured.

 

 

 

 

 

 

 

 

The Phase one report on ex post project sustainability evaluation

Vetting and pilot selection, revised design for evaluating sustained outcomes related to resilience to climate change. Key aspects are: 1) Timing (3-5 years since closure or projects at least 4 years long within the last 5 years and seasonality matches the final evaluation) and 2) Good quality of implementation and M&E with measurable outputs and outcomes traceable to impact(s) and 3) Safety to do fieldwork re: Covid, civil peace, etc.

 

 

We (my so-clever colleagues Meg Spearman and Dennis Bours) introduced a new resilience analysis tool that includes consideration of the climate disturbances, the human and natural systems (and their nexus) affected by and affecting project outcomes. This includes five characteristics of resilience in the outcomes (presence of feedback loops, at scale, plus being diverse, dynamic, and redundant) and means/actions to support outcomes. Resilience can be identified via a clear summary of the structures (S) and functions (F) that typify Resistance, Resilience and Transformation showing where a project is and is moving towards. It is a typology of resistance-resilience-transformation (RRT) onto which the overall project can be mapped based on how actions are designed to maintain or change existing structures and functions. That was integrated into the Adaptation Fund resilience evaluation approach.

 

 

Phase 2 Methods Testing and Ex-post Field-testing: Training of national evaluators and piloting two ex-post evaluations per year includes selecting among these methods to evaluate sustainability ex-post plus the RRT and resilience measures above. In the first ex-post in Samoa’s “Enhancing Resilience of Samoa’s Coastal Communities to Climate Change” (UNDP) happening December 21, it is through qualitative evaluation of wall-infrastructure. The second, Ecuador’s “Enhancing resilience of communities to the adverse effects of climate change on food security, in Pichincha Province and the Jubones River basin “(WFP) has training completed and fieldwork should be from January 22, likely be of food security assets and methods TBD.

 

Phase 3 Evaluations continue, with MEL Capacity Building: Two more years of ex-post pilot evaluations (2 per year) with lesson informing integration into the MEL of the Adaptation Fund. We are already finding out lessons of rigor, of knowledge management, of unexpected benefits of returning years after closure, including indications of sustainability and resilience of the assets, with much more learning to come.

Innovations include “the relative novelty of climate change adaptation portfolios and the limited body of work on ex post evaluation for adaptation, it presents possible methods that will be piloted in field-tested ex post evaluations in fiscal year 2022 (FY22).” This includes piloting shockingly rare evaluation of oft-promised resilience. In the update to AF’s Board three months ago, it transparently outlined shortlisting of five completed projects as potential candidates for the pilots, of which two projects were selected for ex post evaluations. It outlined our process of co-creating the evaluation with national partners to prioritize their learning needs while building national capacity to assess sustainability and resilience of project outcomes in the field onward.

 

Also, training materials for ex post pilots are being shared to foster country and industry learning, focusing on evaluating projects at ex-post and emerging sustainability and resilience, as well as presenting and adapting methods to country and project realities.

 

 

 

 

 

 

 

The training material for ex-post pilots

 

The training had three sessions (which could not have happened without colleague Caroline’s expertise):

  • Part A: Understanding ex-post & resilience evaluations. Introduce and understand ex-post evaluations of sustainability and resilience, especially in the field of climate change adaptation
  • Part B: Discussing country-specific outcome priorities and co-creating learning with stakeholders. Discuss the project and its data more in-depth to understand and select what outcome(s) will be evaluated at ex-post
  • Part C: Developing country-specific methods and approaches. Discuss range of methods with the national evaluator and M&E experts to best evaluate the selected outcome(s) and impact(s)

 

Overall progress can be seen in the document updating the AF’s board: A progress update on ex post evaluations (AFB/EFC.28/Inf.4)

 

So in 2018 I Wished for Sustained Outcomes to be explored and in 2019 I Wished again for more Ex-post Evaluation than Needles in Haystacks. In  2021 some of these wishes are becoming fulfilled!  Seasonal Happiness for me is learning about resilience to climate change, diminished vulnerability and searching for proof of sustainability and emerging outcomes and impact(s) and I am grateful to the Adaptation Fund for its commitment to sustainability.

Accompany us on this path, cheer us on, and do your own ex-post sustainability and resilience evaluations! Happy holidays from the Czech Republic!